I have installed AutoGPT and started playing with it. AutoGPT is a locally installed and run piece of software (in a terminal window) that you theoretically can set a result to achieve and then let run to achieve it. It’s experimental so it is good advice to actually follow its steps along and approve individual actions it suggests doing.
It interacts with different generative AI tools (through your own API keys) and can initiate different actions, including online searches as well as spawning new interactions with LLM’s like GPT4 and using the results in its ongoing process. It chains these prompts and interactions together to get to a result (‘prompt chaining’).

I had to tweak some of the script a little bit (it calls python and pip but it needs to call python3 and pip3 on my machine) but then it works.

Initially I have it set up with OpenAI’s API, as the online guide I found were using that. However in the settings file I noticed I can also choose to use other LLM’s like the publicly available models through Huggingface, as well as image generating AIs.

I first attempted to let it write scripts to interact with the hypothes.is API. It ended up in a loop about needing to read the API documentation but not finding it. At that time I did not yet provide my own interventions (such as supplying the link to the API documentation). When I did so later it couldn’t come up with next steps, or not ingesting the full API documentation (only the first few lines) which also led to empty next steps.

Then I tried a simpler thing: give me a list of all email addresses of the people in my company.
It did a google search for my company’s website, and then looked at it. The site is in Dutch which it didn’t notice, and it concluded there wasn’t a page listing our team. I then provided it with the link to the team’s page, and it did parse that correctly ending up with a list of email addresses saved to file, while also neatly summarising what we do and what our expertise is.
While this second experiment was successfully concluded, it did require my own intervention, and the set task was relatively simple (scrape something from this here webpage). This was of limited usefulness, although it did require less time than me doing it myself. It points to the need of having a pretty clear picture of what one wants to achieve and how to achieve it, so you can provide feedback and input at the right steps in the process.

As with other generative AI tools, doing the right prompting is key, and the burden of learning effective prompting lies with the human tool user, the tool itself does not provide any guidance in this.

I appreciate it’s an early effort, but I can’t reproduce the enthusiastic results others claim. My first estimation is that those claims I’ve seen are based on hypothetical things used as prompts and then being enthusiastic about the plausible outcomes. Whereas if you try an actual issue where you know the desired result it easily falls flat. Similar to how ChatGPT can provide plausible texts except when the prompter knows what good quality output looks like for a given prompt.

It is tempting to play with this thing nevertheless, because of its positioning as a personal tool, as potential step to what I dubbed narrow band digital personal assistants earlier. I will continue to explore, first by latching onto the APIs of more open models for generative AI than OpenAI’s.

Bookmarked Inside the secret list of websites that make AI like ChatGPT sound smart (by By Kevin Schaul, Szu Yu Chen and Nitasha Tiku in the Washington Post)

The Washington Post takes a closer look at Google’s C4 dataset, which is comprised of the content of 15 million websites, and has been used to train various LLM’s. Perhaps also the one used by OpenAI for e.g. ChatGPT, although it’s not known what OpenAI has been using as source material.

They include a search engine, which let’s you submit a domain name and find out how many tokens it contributed to the dataset (a token is usually a word, or part of a word).

Obviously I looked at some of the domains I use. This blog is the 102860th contributor to the dataset, with 200.000 tokens (1/10000% of the total).

Screenshot of the Washington Post’s search tool, showing the result for this domain, zylstra.org.

Bookmarked WordPress AI: Generative Content & Blocks (by Joe Hoyle, found via Chuck Grimmett)

As many others I am fascinated by what generative algorithms like ChatGPT for texts and Stable Diffusion for images can do. Particularly I find it fascinating to explore what it might do if embedded in my own workflows, or how it might change my workflows. So the link above showing an integration of ChatGPT in WordPress’ Gutenberg block editor drew my attention.

The accompanying video shows a mix of two features. First having ChatGPT generate some text, or actually a table with specific data, and having ChatGPT in ‘co-pilot’ style generate code for Gutenberg blocks. I think the latter might be actually useful, as I’ve seen generative AI put to good use in that area. The former, having ChatGPT write part of your posting is clearly not advisable. And the video shows it too, although the authors don’t point it out or haven’t reflected on the fact that ChatGPT is not a search engine but geared to coming up with plausible stuff without being aware of its actual information (the contrast with generating code is that code is much more highly structured in itself so probabilities collapse easier to the same outcome).

The blogpost in the video is made by generating a list of lunar missions, and then turning them into a table, adding their budgets and sorting them chronologically. This looks very cool in the vid, but some things jump out as not ok. Results jump around the table for instance: Apollo 13 moves from 1970 to 2013 and changes budget. See image below. None of the listed budgets for Apollo missions, nor their total, match up with the detailed costs overview of Apollo missions (GoogleDocs spreadsheet). The budget column being imaginary and the table rows jumping around makes the result entirely unfit for usage of course. It also isn’t a useful prompt: needing to fact check every table field is likely more effort and less motivating than researching the table yourself from actual online resources directly.

It looks incredibly cool ‘see me writing a blogpost by merely typing in my wishes, and the work being done instantly’, and there are definitely times I’d wish that to be possible. To translate a mere idea or thought into some output directly however means I’d skip confronting such an idea with reality, with counter arguments etc. Most of my ideas only look cool inside my head, and need serious change to be sensibly made manifest in the world outside my head. This video is a bit like that, an idea that looks cool in one’s head but is great rubbish in practice. ChatGPT is hallucinating factoids and can’t be trusted to create your output. Using it in the context of discovery (as opposed to the justification context of your output such as in this video) is possible and potentially useful. However this integration within the Gutenberg writing back-end of WordPress puts you in the output context directly so it leads you to believe the generated plausible rubbish is output and not just prompting fodder for your writing. ‘Human made’ is misleading you with this video, and I wouldn’t be surprised if they’re misleading themselves as well. A bit like staging the ‘saw someone in half and put them together again’ magician’s trick in an operating room and inviting surgeons to re-imagine their work.

Taking a native-first approach to integrating generative AI into WordPress, we’ve been experimenting with approaches to a “WordPress Copilot” that can “speak” Gutenberg / block-editor.

Copy-pasting paragraphs between ChatGPT and WordPress only goes so far, while having the tools directly embedded in the editor … open up a world of possibilities and productivity wins…

Joe Hoyle

An android robot is filling out a table listing Apollo missions on a whiteboard, generated image using Midjourney

I have a little over 25 years worth of various notes and writings, and a little over 20 years of blogposts. A corpus that reflects my life, interests, attitude, thoughts, interactions and work over most of my adult life. Wouldn’t it be interesting to run that personal archive as my own chatbot, to specialise a LLM for my own use?

Generally I’ve been interested in using algorithms as personal or group tools for a number of years.

For algorithms to help, like any tool, they need to be ‘smaller’ than us, as I wrote in my networked agency manifesto. We need to be able to control its settings, tinker with it, deploy it and stop it as we see fit.
Me, April 2018, in Algorithms That Work For Me, Not Commoditise Me

Most if not all of our exposure to algorithms online however treats us as a means to manipulate our engagement. I see them as potentially very valuable tools in working with lots of information. But not in their current common incarnations.

Going back to a less algorithmic way of dealing with information isn’t an option, nor something to desire I think. But we do need algorithms that really serve us, perform to our information needs. We need less algorithms that purport to aid us in dealing with the daily river of newsy stuff, but really commodotise us at the back-end.
Me, April 2018, in Algorithms That Work For Me, Not Commoditise Me

Some of the things I’d like my ideal RSS reader to be able to do are along such lines, e.g. to signal new patterns among the people I interact with, or outliers in their writings. Basically to signal social eddies and shifts among my network’s online sharing.

LLMs are highly interesting in that regard too, as in contrast to the engagement optimising social media algorithms, they are focused on large corpora of text and generation thereof, and not on emergent social behaviour around texts. Once trained on a large enough generic corpus, one could potentially tune it with a specific corpus. Specific to a certain niche topic, or to the interests of a single person, small group of people or community of practice. Such as all of my own material. Decades worth of writings, presentations, notes, e-mails etc. The mirror image of me as expressed in all my archived files.

Doing so with a personal corpus, for me has a few prerequisites:

  • It would need to be a separate instance of whatever tech it uses. If possible self-hosted.
  • There should be no feedback to the underlying generic and publicly available model, there should be no bleed-over into other people’s interactions with that model.
  • The separate instance needs an off-switch under my control, where off means none of my inputs are available for use someplace else.

Running your own Stable Diffusion image generator set-up as E currently does complies with this for instance.

Doing so with a LLM text generator would create a way of chatting with my own PKM material, ChatPKM, a way to interact (differently than through search and links, as I do now) with my Avatar (not just my blog though, all my notes). It might adopt my personal style and phrasing in its outputs. When (not if) it hallucinates it would be my own trip so to speak. It would be clear what inputs are in play, w.r.t. the specialisation, so verification and references should be easier to follow up on. It would be a personal prompting tool, to communicate with your own pet stochastic parrot.

Current attempts at chatbots in this style seem to focus on things like customer interaction. Feed it your product manual, have it chat to customers with questions about the product. A fancy version of ‘have you tried switching it off and back on?‘ These services allow you to input one or a handful of docs or sources, and then chat about its contents.
One of those is Chatbase, another is ChatThing by Pixelhop. The last one has the option of continuously adding source material to presumably the same chatbot(s), but more or less on a per file and per URL basis and limited in number of words per month. That’s not like starting out with half a GB in markdown text of notes and writings covering several decades, let alone tens of GBs of e-mail interactions for instance.

Pixelhop is currently working with Dave Winer however to do some of what I mention above: use Dave’s entire blog archives as input. Dave has been blogging since the mid 1990s, so there’s quite a lot of material there.
Checking out ChatThing suggests that they built on OpenAI’s ChatGPT 3.5 through its API. So it wouldn’t qualify per the prerequisites I mentioned. Yet, purposely feeding it a specific online blog archive is less problematic than including my own notes as all the source material involved is public anyway.
The resulting Scripting News bot is a fascinating experiment, the work around which you can follow on GitHub. (As part of that Dave also shared a markdown version of his complete blog archives (33MB), which for fun I loaded into Obsidian to search through. Also for comparison with the generated outputs from the chatbot, such as the question Dave asked the bot when he first wrote about the iPhone on his blog.)

Looking forward to more experiments by Dave and Pixelhop. Meanwhile I’ve joined Pixelhop’s Discord to follow their developments.

Bookmarked The push to AI is meant to devalue the open web so we will move to web3 for compensation (by Mita Williams)

Adding this interesting perspective from Mita Williams to my notes on the effects of generative AI. She positions generative AI as bypassing the open web entirely (abstracted away into the models the AIs run on). Thus sharing is disincentivised as sharing no longer brings traffic or conversation, if it is only used as model-fodder. I’m not at all sure if that is indeed the case, but from as early as YouTube’s 2016 Flickr images database being used for AI model training, such as IBM’s 2019 facial recognition efforts, it’s been a concern. Leading to questions about whether existing (Creative Commons) licenses are fit for purpose anymore. Specifically Williams pointing to not only the impact on an individual creator but also on the level of communities they form, are part of and interact in, strikes me as worth thinking more about. The erosion of (open source, maker, collaborative etc) community structures is a whole other level of potential societal damage.

Mita Williams suggests the described erosion is not an effect but an actual aim by tech companies, part of a bait and switch. A re-siloing, an enclosing of commons, where being able to see something in return for online sharing again is the lure. Where the open web may fall by the wayside and become even more niche than it already is.

…these new systems (Google’s Bard, the new Bing, ChatGPT) are designed to bypass creators work on the web entirely as users are presented extracted text with no source. As such, these systems disincentivize creators from sharing works on the internet as they will no longer receive traffic…

Those who are currently wrecking everything that we collectively built on the internet already have the answer waiting for us: web3.

…the decimation of the existing incentive models for internet creators and communities (as flawed as they are) is not a bug: it’s a feature.

Mita Williams