In the past weeks I’ve been playing at times in OpenAI’s GPT-3 playground. You give GPT-3 a prompt and then it will provide some generated text. You could use that as prompt again, or add something yourself and let GPT-3 continue.
This morning, I read Liam Porr’s 2020 posting about a GPT-3 generated blog he kept for a few weeks. (I think keeping it up longer and positioning it like a personal blog would mean certain detection as generated or inauthentic. Unlike when Porr did his experiment, GPT-3 is now available to many, and more people would also be suspicious of texts as potentially generated to begin with.)
For fun I prompted the GPT-3 playground with the title and first few lines of my last posting on my recent use of the Hypothes.is social annotation tool.
My post remade by GPT-3
Below is the result GPT-3 gave me. After pasting the block-quoted part from the original as prompt, it generated the grey coded
part.
10 Thoughts After Making 100 Annotations in Hypothes.is
I’ve now added over 100 annotations using Hypothes.is (h.), almost all within the last month. This includes a few non-public ones. Two weeks ago I wrote down some early impressions, to which I’m now adding some additional observations.
1) 100 annotations (in a month) don’t seem like a lot to me, if h. is a regular tool in one’s browsing habit.
2) The act of annotation feels good, even empowering. It’s a way of taking control of the web, or at least of one’s web experience.
3) Annotations can be very short, even just a single word. This is both good (e.g. for quickly annotating a lot of text) and bad (e.g. when trying to make a more nuanced point).
4) The annotation interface could be improved. In particular, it would be nice to have an easy way to see all annotations on a page, without having to open each one individually.
5) Annotations can be a great way to start a conversation. I’ve had a few annotations that have generated discussion, which is gratifying.
6) Annotations can also be a great way to keep track of thoughts and ideas. I’ve found myself using h. as a kind of “digital scratchpad”, jotting down things that I want to remember or follow up on later.
7) The fact that annotations are public by default is both good and bad. On the one hand, it encourages people to be thoughtful and considerate in their annotations. On the other hand, it can be intimidating, and I’ve found myself self-censoring on occasion.
8) The fact that annotations are tied to a specific URL can be both good and bad. On the one hand, it ensures that annotations are always relevant to the context in which they were made. On the other hand, it can be frustrating when the context changes (e.g. an article is updated) and the annotation is no longer relevant.
9) The fact that annotations are stored centrally (on h.'s servers) is both good and bad. On the one hand, it makes it easy to access and share annotations. On the other hand, it raises privacy and security concerns.
10) Overall, I’m very happy with h. and find it to be a valuable tool. I’m looking forward to using it more in the future.
Some first reactions to that GPT-3 text
- The title (10 things about…) and partly adding the first numbered element, created the expected 10 point list. It’s a common enough marketing/personal branding type format for GPT-3 to pick up on. (Why did I use it yesterday? Because I was too lazy to categorize my observations, so I just listed and numbered them as I wrote them.)
- Ignoring obvious things like the repetitiveness of the text, after reading you’re left with feeling like you’ve read a bunch of words but you remain unsure if you read anything of substance. The text suggests there’s substance though, the first person perspective, mentioning specific aspects. Yet then doesn’t really follow up. It reads like marketing text, content farmed text. It mentions things but doesn’t answer questions, nor pose them. Not a surprise, but it does show how much empty stuff there’s already out there (on which GPT-3 was trained in the first place). I recognise it as low-info text but not necessarily as generated text.
- No links! No links, other than sporadic internal links, is the default in the media, I know. Yet hyperlinks are the strands the Web is made of. It allows pointing to side paths of relevance, to the history and context of which the posting itself is a result, the conversation it is intended to be part of and situated in. Its absence, the pretense that the artefact is a stand alone and self contained thing, is a tell. It’s also a weakness in other online texts, or any text, as books and journals can be filled with links in the shape of footnotes, references and mentions in the text itself)
- No proof of work (to borrow a term) other than that the words have been written is conveyed by the text. No world behind the text, of which the text is a resulting expression. No examples that suggest or proof the author tried things out, looked things up. Compare that to the actual posting that in point 1 talks about social connections around the topic, links to other h. user profiles as data points for comparison, and elsewhere points to examples of behaviour, lists of h. users found created and shared, references other tools (Zotero, Obsidian) and larger scope (PKM workflows) outside the topic at hand, and experimental changes in the site it is published on itself. That all tells of some exploration, of which the posting is the annotation. This also goes back to my earlier remark of using a 10 point list as laziness in the face of categorising things as I’ve done in other posts (see what I did there? No links, cause lazy).
I think that’s the biggest thing that I take from this: any text should at least hint at the rich tapestry of things it is resulting from, if not directly discuss it or link to it. A tapestry not just made from other texts, but other actions taken (things created, data collected, tools made or adapted), and people (whose thoughts you build on, whose behaviour you observe and adopt, who you interact with outside of the given text). Whether it’s been GPT-3 generated or not, that holds.
With the release of various interesting text generation tools, I’m starting an experiment this and next month.
I will be posting computer generated text, prompted by my own current interests, to a separate blog and Mastodon account. For two months I will explore how such generated texts may create interaction or not with and between people, and how that feels.
There are several things that interest me.
I currently experience generated texts as often bland, as flat planes of text not hinting at any richness of experience of the author lying behind it. The texts are fully self contained, don’t acknowledge a world outside of it, let alone incorporate facets of that world within itself. In a previous posting I dubbed it an absence of ‘proof of work’.
Looking at human agency and social media dynamics, asymmetries often take agency away. It is many orders of magnitude easier to (auto)post disinformation or troll than it is for individuals to guard and defend against. Generated texts seem to introduce new asymmetries: it is much cheaper to generate reams of text and share them, than it is in terms of attention and reading for an individual person to determine if they are actually engaging with someone and intentionally expressed meaning, or are confronted with a type of output where only the prompt that created it held human intention.
If we interact with a generated text by ourselves, does that convey meaning or learning? If annotation is conversation, what does annotating generated texts mean to us? If multiple annotators interact with eachother, does new meaning emerge, does meaning shift?
Can computer generated texts be useful or meaningful objects of sociality?
Right after I came up with this, my Mastodon timeline passed me this post by Jeff Jarvis, which seems to be a good example of things to explore:
My computer generated counterpart in this experiment is Artslyz Not (which is me and my name, having stepped through the looking glass). Artslyz Not has a blog, and a Mastodon account. Two computer generated images show us working together and posing together for an avatar.
The generated image of a person and a humanoid robot writing texts
The generated avatar image for the Mastodon account
Bookmarked Disinformation and its effects on social capital networks (Google Doc) by Dave Troy
This document by US journalist Dave Troy positions resistance against disinformation not as a matter of factchecking and technology but as one of reshaping social capital and cultural network topologies. I plan to read this, especially the premises part looks interesting. Some upfront associations are with Valdis Krebs’ work on the US democratic / conservative party divide where he visualised it based on cultural artefacts, i.e. books people bought (2003-2008), to show spheres and overlaps, and with the Finnish work on increasing civic skills which to me seems a mix of critical crap detection skills woven into a social/societal framework. Networks around a belief or a piece of disinformation for me also point back to what I mentioned earlier about generated (and thus fake) texts, how attempts to detect such fakes usually center on the artefact not on the richer tapestry of information connections (last 2 bullet points and final paragraph) around it (I called it provenance and entanglement as indicators of authenticity recently, entanglement being the multiple ways it is part of a wider network fabric). And there’s the more general notion of Connectivism where learning and knowledge are situated in networks too.